Mystery behind Hitchcock's birds

To the Editor — On 18 August 1961, a Californian newspaper reported that thousands of "crazed seabirds pelted the shores of North Monterey Bay, California" regurgitating anchovies. Soon after reading the report (Supplementary Fig. S1), local visitor Alfred Hitchcock was inspired to produce his famous thriller The Birds. Three decades later, in 1991, another mass poisoning occurred in the same area — this time, of fisheating, disoriented and dving brown pelicans. But on this occasion the culprit was identified: the pelicans had ingested domoic acid, a neurotoxin that is produced by the diatom Pseudo-nitzschia. Large quantities of this diatom, and the associated toxin, were found in the stomachs of fish in the region. It has been suggested that diatom-generated domoic acid was also responsible for the 1961 event¹, but direct evidence has been lacking. Here we

show that plankton samples from the 1961 poisoning contained toxin-producing *Pseudonitzschia*, supporting the contention that these toxic diatoms were responsible for the bird frenzy that motivated Hitchcock's thriller.

Algal toxins such as domoic acid are increasingly recognized as the cause of marine poisoning events. Domoic acid is a chemical analogue of glutamate and, as such, binds with high affinity to glutamate receptors in the brain². When domoic acid passes through the blood–brain barrier and binds to these receptors in birds and mammals, it causes symptoms such as confusion, disorientation, scratching, seizures, coma and even death³.

Over the past decade, Monterey Bay, a productive coastal environment in the California Current upwelling system, has been affected by recurrent blooms of *Pseudo-nitzschia* species that produce domoic

Figure 1 | Toxic *Pseudo-nitzschia* and Hitchcock's bird frenzy. Scanning electron microscopy images of zooplankton gut contents collected in July-August 1961 from Monterey Bay, California. **a**, Overview image showing the relative abundance of *Pseudo-nitzschia*. **b**,**c**, *P. turgidula* and **d**,**e**, *P. pseudodelicatissima* - the two most abundant *Pseudo-nitzschia* species found in the zooplankton. Notice the presence of poroid rows within the striae of the latter two species; a central nodulus (c.n.) is also present in both. Both features were used to help identify the species.

acid. These blooms have led to the death or stranding of brown pelicans, Brandt's cormorants and sea-lions^{4–7}. Although *Pseudo-nitzschia* has resided in the waters off California for millennia, domoic acid was only detected in diatoms in the region in 1991⁸. Prior to this, episodes of seabird mortality off the shores of California were attributed to other factors such as fog, infectious diseases, oil spills and fishing practices⁹. One such event was that involving the influx of disorientated seabirds into Monterey Bay in the summer of 1961, which entered into cinematic history.

Sooty shearwaters, *Puffinus griseus*, are common visitors to Monterey Bay. These birds travel from their breeding grounds in the south-west Pacific to the productive waters of the north-east Pacific, including the California Current, during the summer and early autumn to feed¹⁰. In Monterey Bay, huge flocks of sooty shearwaters feed on krill, squid and fish¹¹. In the summer of 1961 the birds were found regurgitating anchovies, flying into objects and dying on the streets, capturing the attention of summer resident Alfred Hitchcock; *The Birds* was released two years later.

Here, we show that toxin-producing species of Pseudo-nitzschia were indeed present in high numbers at the time of the 1961 bird frenzy. In the absence of water samples, we examined archival samples of herbivorous zooplankton - which feed on diatoms, and are preyed on by sea turtles and some fish and birds collected during ship surveys at the time12 (Supplementary Fig. S2). By analysing the gut contents of these animals, we were able to reconstruct regional flora (Supplementary Information). Toxin-producing species of Pseudo-nitzschia accounted for 79% of the diatoms present in the guts of these organisms (Fig. 1a). Species included P. turgidula (Fig. 1b,c), P. pseudodelicatissima (Fig. 1d,e; Supplementary Fig.S3), P. pungens, P. delicatissima, P. australis and P. multiseries (Supplementary Table S1); the latter two dominated blooms during the 1991 poisoning of brown pelicans. The most abundant Pseudo-nitzschia species identified during the 1961 outbreak were P. turgidula, which accounted for 49% of the diatoms present and was recently shown to produce domoic acid in the subarctic Pacific¹³, and P. pseudodelicatissima, which accounted for 38%. We suggest that domoic acid generated by these diatoms accumulated in the food chain, and led to the poisoning of

correspondence

migratory flocks of shearwater that foraged in these waters.

We show that *Pseudo-nitzschia* abundance during the summer of 1961 was of the same order of magnitude as that observed during more recent animal stranding events related to domoic acid poisoning¹⁴. The upwelling of bottom waters declined at the time, and the inflow of oceanic surface waters increased, probably leading to the development of warmwater, low-wind conditions¹⁵. We suggest that this, in turn, promoted *Pseudo-nitzschia* growth and prolonged the residence time of the visiting seabirds. Similar conditions led to the mass poisoning event in 1991⁴.

Given the similarities between events in 1961 and the domoic acid-induced poisoning of 1991, we suggest that toxic *Pseudo-nitzschia* were probably responsible for the odd behaviour and death of Sooty shearwaters in August 1961. This brief study therefore supports the contention that domoic acid caused the seabird frenzy that eventually led Hitchcock to make his film¹, and strongly suggests that domoic-acid-producing phytoplankton have been an agent of marine animal mortality in the California Current system for at least the past fifty years.

References

- 1. Coombs, A. Nature http://dx.doi:10.1038/news.2008.1190 (2008)
- Todd, E. C. D. J. Food Protect. 56, 69–83 (1993).
 Lefebyre, K. A., Dovel, S. L. & Silver, M. W. Mar. Biol.
- **138**, 693–700 (2001).
- 4. Work, T. M. et al. J. Zoo Wildlife Med. 24, 54-62 (1993).
- 5. Scholin, C. A. et al. Nature **403**, 80–84 (2000).
- 6. Gulland, F. M. et al. Vet. Rec. 150, 475–480 (2002).
- Bargu, S. et al. Mar. Ecol-Prog. Ser. 418, 213–222 (2010).
 Lange, C. B. et al. Mar. Ecol-Prog. Ser. 104, 309–312 (1994).
- Lange, C. B. et al. Natl. Ecol-Prog. Ser. 104, 509–512 (1994).
 Stenzel, L. E. et al. Seabird mortality in California as Witnessed
- 5. Steller, L. E. et al. second mortally in California is withese through 14 years of Beached Birds Censuses (Publication No. 10949, Point Reyes Bird Observatory, California; 1988); available at www. prbo.org/refs/files/10949_Stenzel_etal1988.pdf
- 10. Shaffer, S. A. et al. Proc. Natl Acad. Sci. USA 103, 12799-12802 (2006).
- 11. Baltz, D. M. & Morehohn, G. V. Auk 94, 526–543 (1977).
- 12. Ohman, M. D. & Smith, P. E. Cal. Coop. Ocean. Fish.
- **36**, 153–158 (1995). 13. Silver, M. W. et al. Proc. Natl Acad. Sci. USA
- 107. 20762–20767 (2010).
- Bargu, S. et al. Mar. Ecol-Prog. Ser. 237, 209–216 (2002).
 Bolin, R. L. & Abbot, D. P., Cal. Coop. Ocean. Fish. 9, 23–45 (1963).

Acknowledgements

This study was supported by the SiMON (Monterey Bay Sanctuary – NOAA) award, NSF via the CCE-LTER site, and the SIO Pelagic Invertebrates Collection. We would like to thank Covello and Covello Photography for allowing us to use their reconstruction of the Santa Cruz Sentinel front page from 18 August 1961. Any opinion, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author Contributions

S.B., M.W.S. and D.L.G. designed the overall project; S.B., M.W.S.,

M.D.O. and C.R.B.-N performed research; S.B., M.W.S. and M.D.O. analysed data. All authors participated in discussions, contributed ideas along the way and edited the manuscript.

Additional information

Supplementary information accompanies this paper on www.nature.com/naturegeoscience.

Sibel Bargu¹*, Mary W. Silver², Mark D. Ohman³, Claudia R. Benitez-Nelson⁴ and David L. Garrison⁵

¹Department of Oceanography and Coastal Sciences, 1235 Energy, Coast & Environment Building, Louisiana State University, Baton Rouge, Louisiana 70803, USA. ²Department of Ocean Sciences, University of California at Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA. ³Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California 92093-0218, USA. ⁴Marine Science Program and Department of Earth & Ocean Sciences, University of South Carolina, Columbia, South Carolina 29208, USA. ⁵Biological Oceanography Program, Division of Ocean Sciences, National Science Foundation, 4201 Wilson Boulevard, Suite 675.03, Arlington, Virginia 22230, USA. * e-mail: sbargu@lsu.edu